133 research outputs found

    dPV: An End-to-End Differentiable Solar-Cell Simulator

    Full text link
    We introduce dPV, an end-to-end differentiable photovoltaic (PV) cell simulator based on the drift-diffusion model and Beer-Lambert law for optical absorption. dPV is programmed in Python using JAX, an automatic differentiation (AD) library for scientific computing. Using AD coupled with the implicit function theorem, dPV computes the power conversion efficiency (PCE) of an input PV design as well as the derivative of the PCE with respect to any input parameters, all within comparable time of solving the forward problem. We show an example of perovskite solar-cell optimization and multi-parameter discovery, and compare results with random search and finite differences. The simulator can be integrated with optimization algorithms and neural networks, opening up possibilities for data-efficient optimization and parameter discovery

    Predicting charge density distribution of materials using a local-environment-based graph convolutional network

    Full text link
    Electron charge density distribution of materials is one of the key quantities in computational materials science as theoretically it determines the ground state energy and practically it is used in many materials analyses. However, the scaling of density functional theory calculations with number of atoms limits the usage of charge-density-based calculations and analyses. Here we introduce a machine learning scheme with local-environment-based graphs and graph convolutional neural networks to predict charge density on grid-points from crystal structure. We show the accuracy of this scheme through a comparison of predicted charge densities as well as properties derived from the charge density, and the scaling is O(N). More importantly, the transferability is shown to be high with respect to different compositions and structures, which results from the explicit encoding of geometry

    The downward spiral of chronic pain, prescription opioid misuse, and addiction: Cognitive, affective, and neuropsychopharmacologic pathways

    Get PDF
    Prescription opioid misuse and addiction among chronic pain patients are emerging public health concerns of considerable significance. Estimates suggest that more than 10% of chronic pain patients misuse opioid analgesics, and the number of fatalities related to nonmedical or inappropriate use of prescription opioids is climbing. Because the prevalence and adverse consequences of this threat are increasing, there is a pressing need for research that identifies the biobehavioral risk chain linking chronic pain, opioid analgesia, and addictive behaviors. To that end, the current manuscript draws upon current neuropsychopharmacologic research to provide a conceptual framework of the downward spiral leading to prescription opioid misuse and addiction among chronic pain patients receiving opioid analgesic pharmacotherapy. Addictive use of opioids is described as the outcome of a cycle initiated by chronic pain and negative affect and reinforced by opioidergic-dopamingeric interactions, leading to attentional hypervigilance for pain and drug cues, dysfunctional connectivity between self-referential and cognitive control networks in the brain, and allostatic dysregulation of stress and reward circuitry. Implications for clinical practice are discussed; multimodal, mindfulness-oriented treatment is introduced as a potentially effective approach to disrupting the downward spiral and facilitating recovery from chronic pain and opioid addiction

    Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes

    Get PDF
    Electrochemical stability windows of electrolytes largely determine the limitations of operating regimes of lithium-ion batteries, but the degradation mechanisms are difficult to characterize and poorly understood. Using computational quantum chemistry to investigate the oxidative decomposition that govern voltage stability of multi-component organic electrolytes, we find that electrolyte decomposition is a process involving the solvent and the salt anion and requires explicit treatment of their coupling. We find that the ionization potential of the solvent-anion system is often lower than that of the isolated solvent or the anion. This mutual weakening effect is explained by the formation of the anion-solvent charge-transfer complex, which we study for 16 anion-solvent combinations. This understanding of the oxidation mechanism allows the formulation of a simple predictive model that explains experimentally observed trends in the onset voltages of degradation of electrolytes near the cathode. This model opens opportunities for rapid rational design of stable electrolytes for high-energy batteries

    Construction and Testing of orfA +/- FIV Reporter Viruses

    Get PDF
    Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV), where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+) and (-) for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation

    Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings

    Get PDF
    BACKGROUND There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS We conducted a study involving adults (≥50 years of age) with Covid-19–like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients’ vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19–associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. Methods: We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. Results: The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. Conclusions: Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.)
    • …
    corecore